A flame retardant aluminum 2-carboxyethyl-phenyl-phosphinate (CPA-Al) was synthesized through the salification reaction. The molecular structure of CPA-Al and thermal stability were characterized by solid nuclear magnetic resonance, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Subsequently, CPA-Al mixed in polyurethane was coated on polyester textile to obtain flame-retardant samples. The addition of 14.7 wt.% CPA-Al in textile sample can bring a limited oxygen index (LOI) value of 24.5%, 0 s after flame time, and the vertical burning B1 rating. Meanwhile, the incorporated CPA-Al reduced the peak heat release rate, total heat release, average effective heat of combustion, and increased the charring capacity of polyester textiles in contrast to the samples without CPA-Al. CPA-Al exerted not only its flame inhibition effect in gas phase, but also the charring and barrier effect in the condensed phase. Besides, with an increasing CPA-Al ratio in polyester textile, the contact angle gradually decreased from 123.6° to 75.6°, indicating that the surficial property of coating from hydrophobic to hydrophilic, thereby increasing the moisture permeability of polyester textile.