Lithium has long been widely used in the treatment of bipolar mood disorders. Recent studies have demonstrated that lithium is able to decrease ischemia/reperfusion (I/R) injury in the brain, kidneys, and heart. Because lithium may act on a number of stress and survival pathways, it is of great interest to explore this compound also in the setting of liver I/R injury. In this study, we aimed to evaluate the effects of lithium in a model of liver I/R injury in rats. Chronic treatment with lithium (2 mmol/kg for 3 days before ischemia) decreased I/R injury, whereas acute treatment with a single dose of lithium (2 mmol/kg 1 hour before ischemia) did not confer any protection in a partial hepatic I/R model. Furthermore, rats subjected to chronic lithium treatment had a significantly better survival rate (60%) than saline-treated rats (27%) in a total hepatic I/R survival model. Chronic lithium treatment protected against liver I/R injury, as indicated by lower serum aminotransferase levels, fewer I/R-associated histopathological changes, lower hepatic inflammatory cytokine levels, less neutrophil infiltration, and lower hepatic high-mobility group box expression and serum levels. The mechanism of action of lithium appears to involve its ability to inhibit glycogen synthase kinase 3b activation, modulate mitogen-activated protein kinase activation, inhibit hepatic apoptosis, and induce autophagy. On the basis of these data, we conclude that lithium treatment may be a simple and applicable preconditioning intervention for protecting against liver I/R injury.