This paper addresses the problem of planning for a robot with a directional obstacle-detection sensor that must move through a cluttered environment. The planning objective is to remain safe by finding a path for the complete robot, including sensor, that guarantees that the robot will not move into any part of the workspace before it has been seen by the sensor. Although a great deal of work has addressed a version of this problem in which the "field of view" of the sensor is a sphere around the robot, there is very little work addressing robots with a narrow or occluded field of view. We give a formal definition of the problem, several solution methods with different computational trade-offs, and experimental results in illustrative domains.