Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Resource demand by soil microorganisms critically influences microbial metabolism and then influences ecosystem resilience and multifunctionality. The ecological remediation of abandoned tailings is a topic of broad interest, yet our understanding of microbial metabolic status in restored soils, particularly at the aggregate scale, remains limited. This study investigated microbial resources within soil aggregates from revegetated tailings and applied a vector model of ecoenzymatic stoichiometry to examine how different vegetation patterns (grassland, forest, or bare land control) impact microbial resource limitation. Five-year vegetation restoration significantly elevated carbon (C) and nitrogen (N) concentrations and their stoichiometric ratios in soil aggregates (approximately 2-fold), although these increases were not translated to in the microbial biomass and its stoichiometry. The activities of C-and phosphorus (P)acquiring extracellular enzymes in these aggregates increased substantially postvegetation, with the most pronounced escalation in macroaggregates (>0.25 mm). The vector model results indicated soil microbial metabolism was colimited by C and P, most acutely in microaggregates (<0.25 mm). This colimitation was exacerbated by monotypic vegetation cover but mitigated under diversified vegetation cover. Soil nutrient stoichiometric ratios in vegetation restoration controlled microbial resource limitation, overshadowing the impact of heavy metals. Our findings underscore that optimizing resource allocation within soil aggregates through strategic revegetation can enhance microbial metabolism in tailings, which advocates for the implementation of diverse vegetation covers as a viable strategy to improve the ecological development of degraded landscapes.
Resource demand by soil microorganisms critically influences microbial metabolism and then influences ecosystem resilience and multifunctionality. The ecological remediation of abandoned tailings is a topic of broad interest, yet our understanding of microbial metabolic status in restored soils, particularly at the aggregate scale, remains limited. This study investigated microbial resources within soil aggregates from revegetated tailings and applied a vector model of ecoenzymatic stoichiometry to examine how different vegetation patterns (grassland, forest, or bare land control) impact microbial resource limitation. Five-year vegetation restoration significantly elevated carbon (C) and nitrogen (N) concentrations and their stoichiometric ratios in soil aggregates (approximately 2-fold), although these increases were not translated to in the microbial biomass and its stoichiometry. The activities of C-and phosphorus (P)acquiring extracellular enzymes in these aggregates increased substantially postvegetation, with the most pronounced escalation in macroaggregates (>0.25 mm). The vector model results indicated soil microbial metabolism was colimited by C and P, most acutely in microaggregates (<0.25 mm). This colimitation was exacerbated by monotypic vegetation cover but mitigated under diversified vegetation cover. Soil nutrient stoichiometric ratios in vegetation restoration controlled microbial resource limitation, overshadowing the impact of heavy metals. Our findings underscore that optimizing resource allocation within soil aggregates through strategic revegetation can enhance microbial metabolism in tailings, which advocates for the implementation of diverse vegetation covers as a viable strategy to improve the ecological development of degraded landscapes.
The steel industry drives world economic growth, yet it generates heavy metal-rich steel slag, which jeopardizes the environment. The utilization of vermi-technology is essential for the sustainable transformation of toxic steel waste slag (SW) into organic amendments, although field-scale use of vermiprocessed SW remains unexplored. To bridge the gap, this study evaluated the efficacy of vermiprocessed SW as an organic supplement for rice field cultivation, focusing on heavy metal (HM) bioavailability, human health risk, and yield in comparison to raw slag and NPK fertilizer. The results indicated a considerable decrease in the bioavailable fraction of heavy metals in T4 (1:1 SW vermicompost 50% + 50% fertilizer). In treatments, T9 (100% SW) and T10 (50% SW + 50% fertilizer) (FIAM) free ion activity modeling confirmed grain absorption of HMs, and the FIAM HQ values indicated the health risk for the direct application of steel slag waste on the field. The risk factor evaluation of HMs’ presence in treatments T9 and T10 established the possible cancer risk for living beings. Similarly, machine learning models like SOBOL sensitivity analysis and artificial neural networks revealed potential threats associated with HMs on different treatments, respectively. The correlation coefficient revealed the negative effects of bioavailable HMs on various soil microbial and enzymatic properties. Moreover, the abundant yield of rice was attributed to the combination treatment (1:1 50% + NPK 50%), which paved the way for an alternative agronomic approach based on the utilization of vermicomposted steel waste slag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.