Cancer immunotherapy has emerged as a promising approach for the treatment of various cancers. However, the immunosuppressive tumor microenvironment (TME) limits the efficacy of current immunotherapies. In this study, we designed a dual-responsive DNA methyltransferase inhibitor nanoprodrug ACNPs for combination therapy with oncolytic herpes simplex virus (oHSV). We found that the epigenetic inhibitor 5-Azacytidine (5-Aza) upregulated gasdermin E (GSDME) expression at the gene level, whereas the oHSV decreased the ubiquitination and degradation of GSDME to elevate its levels. Based on these observations, we further discovered that ACNPs and oHSV synergistically enhanced GSDME-mediated pyroptosis. Additionally, the combination therapy of ACNPs and oHSV effectively inhibited tumor growth, remodeled the immunosuppressive TME, and improved the efficacy of immune checkpoint blockade (ICB) therapy. These results demonstrate the potential to overcome immunosuppression through synergistic combinations, offering a promising approach for cancer immunotherapy.