Gastrointestinal (GI) cancers are among the leading causes of mortality worldwide. Despite the emergence of new possibilities that offer hope regarding the successful treatment of these cancers, they still represent a significant global health burden. These cancers can arise from various cell types within the gastrointestinal tract and may exhibit different characteristics, behaviors, and treatment approaches. Both the prognosis and the outcomes of GI treatment remain problematic because these tumors are primarily diagnosed in advanced clinical stages. Current biomarkers exhibit limited sensitivity and specificity. Therefore, when developing strategies for the diagnosis and treatment of GI cancers, it is of fundamental importance to discover new biomarkers capable of addressing the challenges of early-stage diagnosis and the presence of lymph node metastases. Pigment epithelial-derived factor (PEDF) has garnered interest due to its inhibitory effects on the migration and proliferation of cancer cells. This protein has been suggested to be involved in various inflammation-related diseases, including cancer, through various mechanisms. It was also observed that reducing the level of PEDF is sufficient to trigger an inflammatory response. This suggests that PEDF is an endogenous anti-inflammatory factor. Overall, PEDF is a versatile protein with diverse biological functions that span across different tissues and organ systems. Its multifaceted activities make it an intriguing target for therapeutic interventions in various diseases, including cancer, neurodegeneration, and metabolic disorders. This review, for the first time, summarizes the role of PEDF in the pathogenesis of selected GI cancers and its potential utility in early diagnosis, prognosis, and therapeutic strategies for this malignancy.