Associating the most influential parameters with the product distribution is of uttermost importance in complex catalytic processes such as fluid catalytic cracking (FCC). These correlations can lead to the information-driven catalyst screening, kinetic modeling and reactor design. In this work, a dataset of 104 uncorrelated experiments, with 64 variables, has been obtained in an FCC simulator using 6 types of feedstock (vacuum gasoil, polyethylene pyrolysis waxes, scrap tire pyrolysis oil, dissolved polyethylene and blends of the previous), 36 possible sets of conditions (varying contact time, temperature and catalyst/oil ratio) and 3 industrial catalysts. Principal component analysis (PCA) has been applied over the dataset, showing that the main components are associated with feed composition (27.41% variance); operational conditions (19.09%) and catalyst properties (12.72%). The variables of each component have been correlated with the indexes and yields of the products: conversion, octane number, aromatics, olefins (propylene) or coke, among others.