Natural beta-phosphodiester 16mer and 15mer antisense oligonucleotides targeted against the HIV-1 and HIV-2 TAR RNAs respectively were previously described as sequence-specific inhibitors of in vitro retroviral reverse transcription. In this work, we tested chemically modified oligonucleotide analogues: alpha-phosphodiester, phosphorothioate, methylphosphonate, peptide nucleic acid or PNA, 2'- o -methyl and (N3'-P5') phosphoramidate versions of the 16mer anti-TAR oligonucleotide. PNA, 2'- O -methyl and (N3'-P5') phosphoramidate oligomers showed a strong inhibitory effect compared with the unmodified 16mer, with reverse transcription inhibition (IC50) values in the nanomolar range. The inhibition was sequence-specific, as scrambled and mismatched control oligonucleotides were not able to inhibit cDNA synthesis. No direct binding of the 2'- O -methyl, PNA or (N3'-P5') phosphoramidate anti-TAR oligonucleotides to the HIV-1 reverse transcriptase was observed. The higher T m obtained with 2'- O -methyl, (N3'-P5') phosphoramidate and PNA molecules concerning the annealing with the stem-loop structure of the TAR RNA, in comparison with the beta-phosphodiester oligonucleotides, is correlated with their high inhibitory effect on reverse transcription.