triarylamines were easily oxidized to afford the corresponding radical cations, which were obtained as hexachloroantimonate salts. X-ray crystallographic analyses showed almost planar structures for these O,C,C-bridged triarylamine radical cations, which represent new members of the family of planar triarylamine radical cations without substituents on the aryl rings. Detailed investigations of the electronic properties of the S,C,C-and O,C,C-bridged triarylamine radical cations demonstrated that the spin and positive charge are sufficiently delocalized over the planar triarylamine scaffolds. The results provide the following insights into the effects of the bridging unit (sulfur vs oxygen) and the dibenzo-annulation on the spin delocalization in the bridged triarylamine radical cations: (1) An effective decrease of the spin density on the nitrogen atom is observed for the sulfur bridge relative to the oxygen bridge; and (2) a moderate decrease of the spin density on the oxygen atom rather than the nitrogen atom is induced by the dibenzo-annulation.