Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating L n M−CE x fragments, followed by cleavage of the C−E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide−carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C 1 reagents, engage in cross-coupling reactions, and enact Fischer−Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.