The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.