The presence of variable static hemin orientational disorder about the ␣-␥-meso axis in the substrate complexes of mammalian heme oxygenase, together with the incomplete averaging of a second, dynamic disorder, for each hemin orientation, has led to NMR spectra with severe spectral overlap and loss of key two-dimensional correlations that seriously interfere with structural characterization in solution. We demonstrate that the symmetric substrate, 2,4-dimethyldeuterohemin, yields a single solution species for which the dynamic disorder is sufficiently rapid to allow effective and informative
Mammalian heme oxygenase (HO)1 is a ϳ300-residue, membrane-bound, non-heme enzyme that, using heme as cofactor and substrate, catalyzes the regiospecific conversion of heme to ␣-biliverdin, iron, and CO (1). The physiological roles of HO are heme catabolism (HO-1) (2-4) and the generation of CO as a putative neural messenger (HO-2) (5, 6). Detailed mechanistic (7-13) and spectroscopic (13-17) studies of the fully active recombinant, soluble 265-residue portion of HO-1 have shown that, in contrast to heme peroxidase and cytochrome P450, HO does not act through a ferryl intermediate. Recent crystal structures (18,19) of the substrate-bound, water-ligated complexes of a more truncated 233-residue human HO, hHO (20), and the complete rat HO (18), rHO, have revealed a largely helical enzyme that confirms the binding of heme by His-25 and locates a highly bent distal helix that is sufficiently close to the heme to sterically block all but the ␣-meso position (see Fig.