As a versatile, straightforward, and cost-effective strategy for the synthesis of selforganized nanomaterials, electrochemical anodization is nowadays frequently used to synthesize anodic metal oxide nanostructures for various solar cell applications. This chapter mainly discusses the synthesis of various anodic TiO nanostructures on foils and as membranes or powders, and their potential use as the photoanode materials based on foils, transparent conductive oxide substrates, and flexible substrates in dye-sensitized solar cell applications, acting as dye-loading frames, light-harvesting enhancement assembly, and electron transport medium. Through the control and modulation of the electrical and chemical parameters of electrochemical anodization process, such as applied voltages, currents, bath temperatures, electrolyte composition, or post-treatments, anodic nanostructures with controllable structures and geometries and unique optical, electronic, and photoelectric properties in solar cell applications can be obtained. Compared with other types of nanostructures, there are several major advantages for anodic nanostructures to be used in solar cells. They are optimized solar cell configuration to achieve efficient light utilization easy fabrication of large size nanostructures to enhance light scattering precise modulation of the electrochemical processes to realize periodic nanostructured geometry with excellent optical properties unidirectional electron transport pathways with suppressed charge recombination and large surface areas by modification of nanostructures. Due to the simple fabrication processes and unique properties, the anodic nanostructures will have a fascinating future to boost the solar cell performances.