A colloidal technology for the synthesis and doping of low-dimensional structures based on zinc and cadmium sulfides directly in the medium of an acrylic monomer is implemented in the process of obtaining optically transparent compositions of polymethylmethacrylate/(Zn,Cd,Mn,Eu)S. It is shown that the photoluminescence of the compositions is associated with a system of levels of structural defects of semiconductor particles located in its band gap, which are formed during successive doping of ZnS and CdS layers with Mn2+ and Eu3+ ions, and with intraband 5D0 → 7F1,2,4 transitions of 4f-electrons of Eu3+ ions. Photoluminescence excitation it occurs as a result of the transition of electrons from the valence band of a semiconductor to the levels of defects in its structure and partial energy transfer to the excited energy levels of Eu3+ ions.