Teicoplanin is a glycopeptide antibiotic which is ineffective against gram-negative bacteria because of its inability to penetrate the outer membrane. Removal of the sugar residues and attachment of polyamines to carbon 63 yielded two dibasic deglucoteicoplanin amides, MDL 62,766 (766) coli and P. aeruginosa outer membrane permeability to the hydrophobic fluorescent probe 1-N-phenylnaphthylamine (NPN), whereas the parent compounds teicoplanin aglycone and teicoplanin and the 13-lactam ceftazidime were totally ineffective. Addition of 1 mM Mg2+ blocked the increase in outer membrane permeability. Compound 766 had a lower MIC than 934 for both bacteria tested, bound to LPS with a higher affinity, and permeabilized outer membranes to NPN at lower concentrations. We propose that both deglucoteicoplanin amides exhibit increased gram-negative activity by virtue of their ability to access the self-promoted uptake pathway across the outer membrane.