Fatty acid synthase (FAS) activity is a potential therapeutic target to treat cancer and obesity. Here, we have identified a molecular link between FAS and HER2 (erbB-2) oncogene, a marker for poor prognosis that is overexpressed in 30% of breast and ovarian cancers. Pharmacological FAS inhibitors cerulenin and C75 were found to suppress p185 HER2 oncoprotein expression and tyrosinekinase activity in breast and ovarian HER2 overexpressors. Similarly, p185 HER2 expression was dramatically down-regulated when FAS gene expression was silenced by using the highly sequencespecific mechanism of RNA interference (RNAi). Pharmacological and RNAi-mediated silencing of FAS specifically down-regulated HER2 mRNA and, concomitantly, caused a prominent up-regulation of PEA3, a transcriptional repressor of HER2. A cytoplasmic redistribution of p185 HER2 was associated with marked morphological changes of FAS RNAi-transfected cells, whereas chemical inhibitors of FAS promoted a striking nuclear accumulation of p185 HER2 . The simultaneous targeting of FAS and HER2 by chemical FAS inhibitors and the humanized antibody directed against p185 HER2 trastuzumab, respectively, was synergistically cytotoxic toward HER2 overexpressors. Similarly, concurrent RNAi-mediated silencing of FAS and HER2 genes synergistically stimulated apoptotic cell death in HER2 overexpressors. p185 HER2 was synergistically down-regulated after simultaneous inhibition of FAS and HER2 by either pharmacological inhibitors or small interfering RNA. These findings provide evidence of an active role of FAS in cancer evolution by specifically regulating oncogenic proteins closely related to malignant transformation, strongly suggesting that HER2 oncogene may act as the key molecular sensor of energy imbalance after the perturbation of tumor-associated FAS hyperactivity in cancer cells.trastuzumab ͉ small interfereing RNA ͉ chemotherapy ͉ lipogenesis ͉ Herceptin T he biosynthetic enzyme fatty acid synthase (FAS) is the major enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids, and it functions normally in cells with high lipid metabolism. Under normal physiological conditions, any FAS increase is tightly regulated by a number of environmental, hormonal, and nutritional signals (1, 2). However, human tissue studies have demonstrated that infiltrating carcinomas of the breast constitutively express high levels of FAS compared to nontransformed human epithelial tissue (3-8). Furthermore, increased levels of FAS accompany the development of in situ carcinoma of the breast, suggesting a potential link between increased expression and increased risk of breast cancer development (9). Remarkably, overexpression and hyperactivity of FAS is associated with more aggressive breast and ovarian cancers (3-8, 10). The early and nearly universal up-regulation of FAS in many human cancers and its association with poor clinical outcome both strengthen the hypothesis that FAS is involved in the development, maintenance, and enhancement of the malignant...