Latent Mycobacterium tuberculosis infection presents one of the largest challenges for tuberculosis control and novel antimycobacterial drug development. A series of pyrano[3,2-b]indolone-based compounds was designed and synthesized via an original eight-step scheme. The synthesized compounds were evaluated for their in vitro activity against M. tuberculosis strains H37Rv and streptomycin-starved 18b (SS18b), representing models for replicating and nonreplicating mycobacteria, respectively. Compound 10a exhibited good activity with MIC 99 values of 0.3 and 0.4 μg/mL against H37Rv and SS18b, respectively, as well as low toxicity, acceptable intracellular activity, and satisfactory metabolic stability and was selected as the lead compound for further studies. An analysis of 10a-resistant M. bovis mutants disclosed a cross-resistance with pretomanid and altered relative amounts of different forms of cofactor F 420 in these strains. Complementation experiments showed that F 420 -dependent glucose-6-phosphate dehydrogenase and the synthesis of mature F 420 were important for 10a activity. Overall these studies revealed 10a to be a prodrug that is activated by an unknown F 420 -dependent enzyme in mycobacteria.