Heat shock protein 70 (Hsp70) is a molecular chaperone that is expressed in response to stress. In this role, Hsp70 binds to its protein substrates and stabilize them against denaturation or aggregation until conditions improve.1 In addition to its functions during a stress response, Hsp70 has multiple responsibilities during normal growth; it assists in the folding of newly synthesized proteins,2 , 3 the subcellular transport of proteins and vesicles,4 the formation and dissociation of complexes,5 and the degradation of unwanted proteins.6 , 7 Thus, this chaperone broadly shapes protein homeostasis by controlling protein quality control and turnover during both normal and stress conditions.8 Consistent with these diverse activities, genetic and biochemical studies have implicated it in a range of diseases, including cancer, neurodegeneration, allograft rejection and infection. This review provides a brief review of Hsp70 structure and function and then explores some of the emerging opportunities (and challenges) for drug discovery.
Hsp70 is Highly ConservedMembers of the Hsp70 family are ubiquitously expressed and highly conserved; for example, the major Hsp70 from Escherichia coli, termed DnaK, is approximately 50% identical to human Hsp70s.9 Eukaryotes often express multiple Hsp70 family members with major isoforms found in all the cellular compartments: Hsp72 (HSPA1A) and heat shock cognate 70 (Hsc70/HSPA8) in the cytosol and nucleus, BiP (Grp78/HSPA5) in the endoplasmic reticulum and mtHsp70 (Grp75/mortalin/HSPA9) in mitochondria. Some of the functions of the cytosolic isoforms, Hsc70 and Hsp72, are thought to be redundant, but the transcription of Hsp72 is highly responsive to stress and Hsc70 is constitutively expressed. In the ER and mitochondria, the Hsp70 family members are thought to fulfill specific functions and have unique substrates, with BiP playing key roles in the folding and quality control of ER proteins and mtHsp70 being involved in the import and export of proteins from the mitochondria. For the purposes of this review, we will often use Hsp70 as a generic term to encompass the shared properties of the family members.
Domain Architecture and Substrate Binding of Hsp70All members of the Hsp70 family have an N-terminal nucleotide binding domain (NBD) (~40 kDa) and a C-terminal substrate-binding domain (SBD) (~25 kDa) connected by a short linker ( Figure 1A).10 The NBD consists of two subdomains, I and II, which are further divided into regions a and b. The Ia and IIa subdomains interact with ATP through a nucleotide-binding cassette related to those of hexokinase, actin and glycerol kinase.11 , 12 The SBD consists of a 10-kDa α-helix subdomain and a 15-kDa β-sandwich. Crystal structures suggest that substrate peptides are bound in an extended conformation between * Correspondence can be addressed to: Jason E. Gestwicki, University of Michigan, Life Sciences Institute, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, P (734) 615-9537, gestwick@umich.edu. loops of the β-sandwich and that the α-heli...