Lead halide perovskite solar cells (PSCs) have demonstrated great potential for realizing low-cost and easily fabricated photovoltaics. At this juncture, power conversion efficiency and longterm stability are two important factors limiting their transition. PSCs exhibit rapid environmental degradation since the perovskite layer is very sensitive to factors such as humidity, temperature, and ultraviolet light. Here, we demonstrate a novel successful approach that simultaneously improves the efficiency and stability of PSCs. This approach relies on incorporation of a dual-functional PMMAfullerene complex into the perovskite layer. The fullerene within perovskite layer forms a localized dipole-like electric field that favors the electron-hole separation resulting in significant improvement in current density and fill factor with conversion efficiency reaching 18.4%. The molecular-scale coating of hydrophobic PMMA on the perovskite grain boundary effectively blocks moisture penetration into the perovskite, thereby, significantly improving the stability against moisture, heat, and light. The PSCs with PMMA-fullerene complex showed no photovoltaic performance degradation for 250 days and exhibited 60 times higher stability compared to the state-of-the-art devices under continuous 1 sun illumination in ambient air.