Polybisbenzimidazobenzophenanthroline-dione (BBB) is a high-performance polymer which is characterized by very high mechanical strength in combination with exceptional thermal stability, but it cannot be processed to electrospun fibres for any useful applications due to its insolubility and infusibility. We overcame all obstacles in the electrospinning of BBB by a new bottom-up, and facile approach for the solid-state polymerization of self-assembled monomer precursors. Key to this new strategy is the incorporation of a high molecular weight sacrificial polymer to aid in fibre formation. The resulting electrospun BBB fibres and belts prepared thereof according to this new approach are very strong and show excellent thermal stability. We envisage that this procedure could be applied to other classes of non-processable high-performance polymers for the preparation of electrospun fibres for applications such as filtration, sound insulation, battery separation, electrodes, fire protection, and reaction engineering under demanding conditions.