Today, despite significant progress in developing skin tissue engineering products, the fabrication of an ideal wound dressing that could meet the essential criteria, such as promoting angiogenesis -mainly in a diabetic wound- still remains a challenge. A diabetic wound is a chronic wound in which vascularization is low, and the wound healing process may stop. In this regard, Nitric oxide (NO) enhances the healing of diabetic wounds by promoting angiogenesis and providing antibacterial activity in wound sites. In this study, we produced a NO-releasing wound dressing (CMC-ALg-GSNO) composed of Carboxymethyl chitosan (CMC), sodium alginate (ALg), and Snitrosoglutathione (GSNO). The results obtained from the scanning electron microscopy (SEM) show that wound dressing has a porous structure. The water uptake and water vapor transmission for the wound dressing were obtained 4354.1 ± 179.3 % and 2753.8 ± 54.6 g/m2 per day, respectively. NO release study showed that NO release from CMC-ALg-GSNO continuously occurred within 168 hours. In vivo test, The CMC-ALg-GSNO wound dressing developed wound healing in a rat model of full-thickness diabetic wounds compared to the CMC-ALg and Gauze wound dressings. Thus, this study showed that CMC-ALg-GSNO wound dressing could lead to novel therapeutic invasions to treat diabetic wounds.