Recently, due to the intensive and fast progress of the high frequency wireless communication environment, including 5th generation (5G) wireless communication, more robust substrate for printed circuit board (PCB) application, especially with less power consumption, is required. In this study, modified resins based on styrene-maleic anhydride (SMA) copolymer were prepared and evaluated as binder resin to accomplish a low dielectric constant or relative permittivity (εr: <3.0) substrate for the PCB application under ultrahigh frequencies (UHF; 1 GHz~9.4 GHz). The low εr dielectric characteristics of the modified SMA copolymer could be correlated with effects from the stereo-structure of carbon chains or conformational orientation, where the degree of crystallization was analyzed by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopies. Prepreg films of the low εr modified SMA copolymers and their compounds with epoxy resins were also characterized in terms of dielectric loss or dissipation factor (Df), which have shown more noticeable relation with their stereo-structures as well.