Polyurethane elastomers are anticipated to be applied in the field of cavitation erosion (CE) resistance, but their protection and damage mechanisms are not clear, which greatly restricts their further development. In this article, five polyether polyurethanes (PUx) with different crosslinking densities were prepared. Their mechanical properties, thermal properties, water absorption, surface morphology and chemical structure before and after CE tests were compared with ESEM, OM, TG-DSC, FTIR and XPS in detail. The results showed that with an increase in crosslinking density, the tensile strength of PUx increased first and then decreased, elongation at break and water absorption reduced gradually and thermal decomposition temperature and adhesion strength increased steadily. During the CE process, cavitation load aggravated the degree of microphase separation and made brittle hard segments concentrate on the coating surface; meanwhile, cavitation heat accelerated hydrolysis, pyrolysis, oxidation and the fracture of molecular chains. As a result, the mechano-thermal coupling intensified the formation and propagation of fatigue cracks, which should be the fundamental reason for the CE damage of polyurethane elastomer. PU0.4 exhibited the best CE resistance among the five coatings thanks to its good comprehensive properties and may find potential applications on the surface of hydraulic components.