Using an easy mechanical agitation process at room temperature, a metal–organic framework (MOF) based on metallic Zn(ii), organic linker benzene-1,3,5-tricarboxylic acid (Zn-BTC), Fe3O4 nanoparticles, and nanocellulose are combined to create a novel composite material called Fe3O4/NC/MOF. Various tools were used to characterize the created composite. Congo red, Basic Blue 54 (BB 54), Basic Violet 14 (BV 14), and Acid red 88 (AR 88) dyes were effectively eliminated from water using Fe3O4/NC/MOF. A number of variables were investigated, including pH, temperature, contact time, initial dye concentration, and adsorbent dosage. To understand the specific adsorption process, a number of kinetic models were used, including the intra-particle diffusion model, Elovich’s kinetic model, pseudo-first-order, and pseudo-second-order kinetic models. The most accurate description of dye sorption kinetics comes from the pseudo-second-order kinetic model. Also, the Langmuir model is more accurate to describe isotherms than Freundlich and Temkin models. Furthermore, thermodynamic parameters were obtained and examined, including enthalpy (ΔH), Gibbs free energy (ΔG), and entropy (ΔS). After four cycles, the Fe3O4/NC/MOF demonstrated good recyclability. According to experimental research, this adsorbent is promising to enhance the quality of environmental water that has been tainted with organic dyes.