Summary
In the oceans, toxic secondary metabolites often protect otherwise poorly defended, soft-bodied invertebrates such as shell-less mollusks from predation. The origins of these metabolites are largely unknown, but many of them are thought to be made by symbiotic bacteria. In contrast, mollusks with thick shells and toxic venoms are thought to lack these secondary metabolites due to reduced defensive needs. Here, we show that heavily defended cone snails also occasionally contain abundant secondary metabolites, γ-pyrones known as nocapyrones, and that these pyrones are synthesized by symbiotic bacteria. This study shows that symbiotic bacteria can produce metabolites isolated from gastropod mollusks. The symbiotic bacteria, Nocardiopsis alba CR167, are closely related to potentially widespread actinomycetes that we propose to be casual symbionts of invertebrates on land and in the sea. The natural roles of nocapyrones are not known, but they are active in neurological assays at low micromolar levels, revealing that mollusks with external shells are an overlooked source of secondary metabolite diversity.