In this study, osteogenic differentiation and calcification of preosteoblast (MC3T3-E1) cultured on sputter-deposited titanium (Ti), zirconium (Zr), and gold (Au) on cover glasses were evaluated to understand the differences in bone formation ability among these three metals; these metals show the same high corrosion resistance, but Ti and Zr are covered by surface passive oxide film while Au is not covered by the oxide film. Ti and Zr promoted cellular proliferation without osteogenic differentiation. Cells cultured on Ti and Zr expressed higher levels of Runx2, Col1α1, and Akp2 at an earlier stage, which indicated faster promotion of osteogenic differentiation, as compared to those cultured on Au. Moreover, after 21 days of culture, the Bglap1 and Ifitm5 expression peaks in cells cultured on Ti and Zr were higher than those in cells cultured on Au, which indicated faster promotion of calcification. Cells cultured on Ti showed an advantage in osteogenic differentiation at an early stage, while cells on Zr showed better calcification promotion with a long-term culture. The amount of extracellular calcified deposits was in good agreement with the gene expression results. On the other hand, the intracellular calcium content of cells on Au specimens was higher than that of cells on Ti and Zr specimens. The results indicate that preosteoblasts on Ti and Zr showed faster osteogenic differentiation and calcification than those on Au, whereas Au improved the intracellular calcium content. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 639-651, 2016.