A 3 × 3 + 1 factorial experiment was conducted based on a completely randomized design to evaluate the effects of different sources of copper on plasma metabolites, nutrient digestibility, relative copper bioavailability, and retention of some minerals in male mink. Animals in the control group were fed a basal diet, which mainly consisted of corn, fish meal, meat and bone meal, and soybean oil, with no copper supplementation. Mink in the other 9 treatments were fed the basal diet supplemented with Cu from reagent-grade copper sulfate (CuSO4), tribasic copper chloride (TBCC), or copper methionine (CuMet). Copper concentrations of the experimental diets were 50, 100, and 150 mg Cu/kg DM. Blood samples were collected via the toe clip at the end of study (d 42) to determine blood hematology and blood metabolites. A metabolism trial of 4 d was conducted during the last week of experimental feeding. There was a linear (P < 0.01) effect of dose of Cu on plasma Cu concentrations, ceruloplasmin concentration, and Cu-Zn superoxide dismutase activity. A linear response to Cu dose was noted for fat (P < 0.05) digestibility. Supplemental dose of Cu linearly increased (P < 0.05) liver Cu and decreased (P < 0.05) liver Zn level but did not alter liver Fe. The concentration of liver Cu of the mink fed with TBCC and CuMet diets was greater (P< 0.05) than that fed CuSO4. Compared with CuSO4 (100%), relative bioavailability values of TBCC were 104 and 104%, based on serum ceruloplasmin and liver copper, respectively, and relative bioavailability values of CuMet were 130 and 111%. CuMet and TBCC are more bioavailable than CuSO4. In conclusion, the relative bioavailability of CuMet obtained in this study was greater than that of CuSO4 and TBCC. Dose of Cu had an important effect on the regulating ceruloplasmin concentration, Cu-Zn superoxide dismutase activity, and the digestion of dietary fat in mink.