The present study is an attempt to discover the hydrogen storage capacity of graphene oxide-Palladium (GO-Pd) nanocomposite through Benkeser reaction. A new route has been developed to adsorb hydrogen using GO-Pd as storage medium. Graphite is oxidised using improved Hummer's method (soft chemistry synthetic route) to produce graphene oxide (GO) nanoparticles. GO-Pd composite is synthesized by ultrasonication, chemical treatment with potassium tetrachloropalladate (K 2 PdCl 4) and overnight heat treatment. The prepared GO-Pd nanocomposite is hydrogenated by using lithium, ethylene diamine in argon atmosphere under ambient conditions. The hydrogenated graphene oxide-Palladium (H-GO-Pd) nanocomposites were characterized by scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR) analysis, thermo gravimetric analysis (TGA) and X-ray diffractogram analysis. The FTIR analysis reports that hydrogen is adsorbed at three positions (ortho, meta and para) of graphene. The TGA analysis is used to understand the degradation behaviour of H-GO-Pd nanocomposite. It is to be noted that the degree of hydrogenation (DH) or hydrogen storage of the prepared H-GO-Pd is 17.35 weight %. Although it is not surprising, the DH is quite higher than the previously reported values. Thus graphene oxide supported Palladium nanocomposites is a definite resource for improved hydrogenation than the earlier disclosed materials using graphene.