Since the discovery of conducting polymers (CPs), their unique properties and tailor-made structures on-demand have shown in the last decade a renaissance and have been widely used in fields of chemistry and materials science. The chemical and thermal stability of CPs under ambient conditions greatly enhances their utilizations as active sensitive layers deposited either by in situ chemical or by electrochemical methodologies over electrodes and electrode arrays for fabricating gas sensor devices, to respond and/or detect particular toxic gases, volatile organic compounds (VOCs), and ions trapping at ambient temperature for environmental remediation and industrial quality control of production. Due to the extent of the literature on CPs, this chapter, after a concise introduction about the development of methods and techniques in fabricating CP nanomaterials, is focused exclusively on the recent advancements in gas sensor devices employing CPs and their nanocomposites. The key issues on nanostructured CPs in the development of state-of-the-art miniaturized sensor devices are carefully discussed. A perspective on next-generation sensor technology from a material point of view is demonstrated, as well. This chapter is expected to be comprehensive and useful to the chemical community interested in CPs-based gas sensor applications.