The synthesis of 5,6,7,8-tetrahydro-[1,2,4]triazolo[5,1-b]quinazolin-9(4H)-one (THTQ), a potentially biologically active compound, was pursued, and its structure was determined through a sequence of spectral analysis, including 1H-NMR, 13C-NMR, IR, and HRMS. Four bacterial and four fungal strains were evaluated for their susceptibility to the antibacterial and antifungal properties of the THTQ compound using the well diffusion method. The impact of THTQ on the corrosion of mild steel in a 1 M HCl solution was evaluated using various methods such as weight loss, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The study revealed that the effectiveness of THTQ as an inhibitor increased with the concentration but decreased with temperature. The PDP analysis suggested that THTQ acted as a mixed-type inhibitor, whereas the EIS data showed that it created a protective layer on the steel surface. This protective layer occurs due to the adsorption behavior of THTQ following Langmuir’s adsorption isotherm. The inhibition potential of THTQ is also predicted theoretically using DFT at B3LYP and Monte Carlo simulation.