Biodegradable poly(N-isopropyl acrylamide) (poly-NIPAM) hydrogels with controlled molecular weight of the parent polymer and its degradation products were synthesized by atom transfer radical polymerization in the presence of a polycaprolactone-based di-chlorinated macroinitiator and polycaprolactone dimethacrylate. The phase transition temperature, swelling, hydrolytic degradability, and mechanical properties at 25 and 37°C were explored. A cytocompatibility study showed good NIH3T3 cell response over 5 days culture on the surface of the hydrogels, demonstrated by a consistent increase in cell proliferation detected by an Alamar Blue assay. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide] results suggested that the hydrogels and their degradation products in the concentration range of 1–25 mg/ mL were not cytotoxic to NIH3T3 cells. A sphere-templating technique was utilized to fabricate biodegradable polyNIPAM scaffolds with monodisperse, pore size. Scaffolds with pore diameter of 48 ± 6 μm were loaded with A-10 smooth muscle cells and then warmed to 37°C entrapping cells in pores approximately 40 μm in diameter, a size we have found to be optimal for angiogenesis and biointegration. Due to their degradable nature, tunable molecular weight, highly interconnected morphology, thermally controlled monodisperse pore size, and temperature-induced volume expansion–contraction, the polyNIPAM-based scaffolds developed in this work will be valuable in tissue engineering.