Polysaccharide conjugates are important renewable materials. If properly designed, they may for example be able to carry drugs, be proactive (e.g., with amino acid substituents) and can carry a charge. These aspects can be particularly useful for biomedical applications. Herein, we report a simple approach to preparing polysaccharide conjugates. Thiol-Michael additions can be mild, modular, and efficient, making them useful tools for post-modification and the tailoring of polysaccharide architecture. In this study, hydroxypropyl cellulose (HPC) and dextran (Dex) were modified by methacrylation. The resulting polysaccharide, bearing α,β-unsaturated esters with tunable DS (methacrylate), was reacted with various thiols, including 2-thioethylamine, cysteine, and thiol functional quaternary ammonium salt through thiol-Michael addition, affording functionalized conjugates. This click-like synthetic approach provided several advantages including a fast reaction rate, high conversion, and the use of water as a solvent. Among these polysaccharide conjugates, the ones bearing quaternary ammonium salts exhibited competitive antimicrobial performance, as supported by a minimum inhibitory concentration (MIC) study and tracked by SEM characterization. Overall, this methodology provides a versatile route to polysaccharide conjugates with diverse functionalities, enabling applications such as antimicrobial activity, gene or drug delivery, and biomimicry.