Excitability and locomotor activity of male and female last instar larvae and adults of the two-spotted cricket are measured under crowded conditions, allowing the animals to interact with conspecifics during observations. Male and female last instar larvae display age-dependent cyclic patterns of activity with maxima during early to mid scotophase and minima during early photophase. A period of low locomotor activity without time of day-dependent cyclic changes starts 1 day before the final moult and lasts until 1 day after the moult. Then, both excitability and locomotor activity increase and become cyclic again within 2 or 3 days. The cyclic changes gradually dampen in adult females older than 6 days and finally cease. When injected into photophase larvae and adults, adipokinetic hormone (AKH) increases excitability and locomotor activity in a dose-dependent manner, whereas it has no such effect when injected into scotophase animals. Other behaviours (jumping, hind wing trembling) that mostly occur in scotophase crickets are also increased by injecting AKH into photophase crickets. We argue that AKH could be responsible for linking the endogenous clock output with the cyclic changes in locomotor activity. Furthermore, AKH may serve to synchronise metabolism and behaviour to optimise larval development and reproduction.