Surgery, particularly open surgery, is known to cause tissue/organ adhesion during healing. These adhesions occur through contact between the surgical treatment site and other organ, bone, or abdominal sites. Fibrous bands can form in unnecessary contact areas and cause various complications. Consequently, film-and gel-type anti-adhesion agents have been developed. The development of sustained drug delivery systems is very important for disease treatment and prevention. In this study, the drug release behavior was controlled by crosslinking lidocaine-loaded alginate/carboxymethyl cellulose (CMC)/polyethylene oxide (PEO) nanofiber films prepared by electrospinning. Lidocaine is mainly used as an anesthetic and is known to have anti-adhesion effects. Our results show that drug release is regulated by the crosslinking degree of the lidocaine-loaded alginate/CMC/PEO film. The drug release behavior was confirmed by HPLC, and, as a result, an excellent anti-adhesion barrier was developed that can be applied to treat patients in the medical field.Polymers 2020, 12, 618 2 of 13 through temperature, pH, and UV irradiation [23,24,26,29,30].Crosslinking generally involves forming links between two polymer chains using crosslinking agents. These links include covalent and ionic bonds. Therefore, the control of crosslinking density is generally used to regulate the physical properties of polymers, such as drug release profiles. Numerous studies have been conducted on the regulation of drug release behavior by controlling the degree of crosslinking of drug carriers [31][32][33]. Scheme 1. Schematic of the postsurgical tissue/organ adhesion process and the role of the antiadhesion barrier.