Cognitive impairment is a primary feature of many neuropsychiatric disorders and there is a need for new therapeutic options. Catechol-O-methyltransferase (COMT) inhibitors modulate cortical dopaminergic function and have been proposed as potential cognitive enhancers. Unfortunately, currently available COMT inhibitors are not good candidates due to either poor blood-brain barrier penetration or severe toxicity. To address the need for safe, brain-penetrant COMT inhibitors, we tested multiple novel COMT inhibitors in a set of preclinical in vivo efficacy assays to determine their viability as potential clinical candidates. We found that multiple COMT inhibitors, exemplified by LIBD-1 and LIBD-3, significantly modulated dopaminergic function measured as decreases in homovanillic acid (HVA) and increases in 3,4-Dihydroxyphenylacetic acid (DOPAC), two dopamine metabolites, in cerebrospinal fluid (CSF) and the frontal cortex. Additionally, we found the LIBD-1 significantly improved cognitive flexibility in a rat attentional set-shifting assay (ASST), an effect previously seen with the COMT inhibitor tolcapone. These results demonstrate that LIBD-1 is a novel COMT inhibitor with promising in vivo activity and the potential to serve as a new therapy for cognitive impairment.