Agents stabilizing G-quadruplexes have the potential to destroy the functional structure of telomere and could therefore act as antitumor agents. We previously reported that SYUIQ-5 could stabilize G-quadruplex, induce senescence, and inhibit c-myc gene promoter activity. In this study, we showed that SYUIQ-5 inhibited proliferation of CNE2 and HeLa cancer cells, triggered a rapid and potent telomere DNA damage response characterized by the formation of telomeric foci γ-H2AX, and obviously induced autophagy with the features of increased LC3-II and a punctuated pattern of YFP-LC3 fluorescence. These phenomena may primarily depend on the delocalization of TRF2 from telomere, which was further degraded by proteasomes. Furthermore, overexpression of TRF2 inhibited SYUIQ-5-induced γ-H2AX expression. Also, ATM was activated following SYUIQ-5 treatment. The pretreatment with ATM inhibitor ku55933 and ATM siRNA effectively reduced the production of γ-H2AX and LC3-II. ATM knockdown partially antagonized the anticancer effects of SYUIQ-5. Moreover, inhibition of autophagy by short hairpin RNA against the autophagy-related gene ATG5 attenuated the cytotoxicity of SYUIQ-5. These results indicated that SYUIQ-5 triggered potent telomere damage through TRF2 delocalization from telomeres, and eventually induced autophagic cell death in cancer cells. Our findings exhibit a novel mechanism that is responsible for the antitumor effects of SYUIQ-5. [Mol Cancer Ther 2009;8 (12):3203-13]