The
receptor for advanced glycation endproducts (RAGE) is an ubiquitous,
transmembrane, immunoglobulin-like receptor that exists in multiple
isoforms and binds to a diverse range of endogenous extracellular
ligands and intracellular effectors. Ligand binding at the extracellular
domain of RAGE initiates a complex intracellular signaling cascade,
resulting in the production of reactive oxygen species (ROS), immunoinflammatory
effects, cellular proliferation, or apoptosis with concomitant upregulation
of RAGE itself. To date, research has mainly focused on the correlation
between RAGE activity and pathological conditions, such as cancer,
diabetes, cardiovascular diseases, and neurodegeneration. Because
RAGE plays a role in many pathological disorders, it has become an
attractive target for the development of inhibitors at the extracellular
and intracellular domains. This review describes the role of endogenous
RAGE ligands/effectors in normo- and pathophysiological processes,
summarizes the current status of exogenous small-molecule inhibitors
of RAGE and concludes by identifying key strategies for future therapeutic
intervention.