A series of cephalosporin-derived reverse hydroxamates and oximes were prepared and evaluated as inhibitors of representative metallo- and serine-β-lactamases. The reverse hydroxamates showed submicromolar inhibition of the GIM-1 metallo-β-lactamase. With respect to interactions with the classes A, C, and D serine β-lactamases, as judged by their correspondingly low Km values, the reverse hydroxamates were recognized in a manner similar to the non-hydroxylated N-H amide side chains of the natural substrates of these enzymes. This indicates that, with respect to recognition in the active site of the serine β-lactamases, the O=C-NR-OH functionality can function as a structural isostere of the O=C-NR-H group, with the NO-H group presumably replacing the amide N-H group as a hydrogen bond donor to the appropriate backbone carbonyl oxygen of the protein. The reverse hydroxamates, however, displayed kcat values up to three orders of magnitude lower than the natural substrates, thus indicating substantial slowing of the hydrolytic action of these serine β-lactamases. Although the degree of inactivation is not yet enough to be clinically useful, these initial results are promising. The substitution of the amide N-H bond by N-OH may represent a useful strategy for the inhibition of other serine hydrolases.