This review focuses on 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates, their stereoisomers, and their close analogues. The biological activities of all known 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates as potential antiviral or anticancer agents are compiled. The routes that have been taken for the chemical synthesis of such nucleoside derivatives are described, with special attention to the innovative strategies. The enzymatic synthesis, base-pairing properties, structure, and stability of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides are discussed. The use of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides as small oligonucleotide (e.g., human immunodeficiency virus integrase) inhibitors, in applications such as antisense therapy, silencing RNA (siRNA), or aptamer selections, is detailed.