Hollow cylinders with a diameter in the nanometer range are carving out prime positions in nanoscience. Thanks to their physico-chemical properties, they could be key elements for next-generation nanofluidics devices, for selective molecular sieving, energy conversion or as catalytic nanoreactors. Several difficult problems such as fine diameter and interface control are solved for imogolite nanotubes. This chapter will present an overview of this unique class of clay nanotubes, from their geological occurrence to their synthesis and their applications. In particular, emphasis will be put on providing an up-to-date description of their structure and properties, their synthesis and the strategies developed to modify their interfaces in a controlled manner. Developments on their applications, in particular for polymer/imogolite nanotubes composites, molecular confinement or catalysis, are presented.