Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer.