Triphenyltin(IV) complexes of composition [Ph(3)SnL(1)H](n) (1) and [Ph(3)SnL(2)H](n) (2) (where L(1)H = 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl]benzoate and L(2)H = 2-[(E)-2-(4-Hydroxy-5-methylphenyl)-1-diazenyl]benzoate) were synthesized and characterized by spectroscopic ((1)H, (13)C and (119)Sn NMR, IR, (119)Sn Mössbauer) techniques in combination with elemental analysis. The molecular structures and geometries of the complexes (1 and 2) were fully optimized using the quantum mechanical method (PM3). Complexes (1 and 2) were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumour cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The test compounds 1 and 2 exhibit comparable results and both the compounds are found to be far superior to CCDP (cisplatin), 5-FU (5-fluorouracil) and ETO (etoposide) across a panel of cell lines and the activity is more pronounced for the A498 (22 fold) and H226 (33 fold) cell lines compared to CCDP, and A498 (13 fold), H226 (39 fold) and MCF-7 (33 fold) cell lines compared to ETO. The test compounds are even 23 fold more active in magnitude in terms of the ID(50) value at least against the H226 cell lines when compared with MTX (methotrexate). Further, the mechanistic role of cytotoxic activity of test compounds (1 and 2), are discussed in relations to the theoretical results of docking studies with some of the key enzymes such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II.