2023
DOI: 10.1039/d3ra00500c
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis and photoluminescent characterization of ceramic phosphors Li2MgGeO4:Ln3+ (Ln3+ = Pr3+ or Tm3+) under different excitation wavelengths

Abstract: Luminescence properties of Li2MgGeO4:Ln3+ (Ln = Pr, Tm) depend significantly on the excitation wavelengths. Several emission bands are observed, which can be assigned to ceramic matrix and characteristic transitions of Pr3+ and Tm3+ ions.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 52 publications
0
1
0
Order By: Relevance
“…[1][2][3][4][5][6][7] This is possible due to the presence of a large number of meta-stable energy levels in the rare earth ions. [8][9][10][11][12] The rare earth ions, such as Eu 3+ , Tb 3+ , Tm 3+ , Dy 3+ , etc., emit red, green, blue and yellow colors respectively, in different host matrices. 2,[5][6][7] Thus, a combination of these rare earth ions, such as Dy 3+ /Eu 3+ , Sm 3+ /Eu 3+ , Tb 3+ / Eu 3+ , etc.…”
Section: Introductionmentioning
confidence: 99%
“…[1][2][3][4][5][6][7] This is possible due to the presence of a large number of meta-stable energy levels in the rare earth ions. [8][9][10][11][12] The rare earth ions, such as Eu 3+ , Tb 3+ , Tm 3+ , Dy 3+ , etc., emit red, green, blue and yellow colors respectively, in different host matrices. 2,[5][6][7] Thus, a combination of these rare earth ions, such as Dy 3+ /Eu 3+ , Sm 3+ /Eu 3+ , Tb 3+ / Eu 3+ , etc.…”
Section: Introductionmentioning
confidence: 99%