Abstract. In this work, the effect of the inclusion of electrically conductive and non-conductive nanofillers in a state of the art epoxy gelcoat was studied. The conductive fillers used were multi-wall carbon nanotubes and exfoliated nanographite. The non-conductive ones were nanoclay and nano-titanium dioxide. The content of the nanofillers was 0.65% per weight and their inclusion took place using high shear mixing devices. The conductive fillers showed an increase in tensile and fracture properties, as well as in the thermal properties whereas the non-conductive fillers did not show any improvement on the fracture properties. The glass transition temperature was practically unaffected by the presence of the nanofillers while conversly, the coefficient of thermal expansion was decreased for all the nanofillers for temperatures above the glass transition temperature. Finally, weatherometer tests showed that the nanofillers contribute into less weight losses in comparison with the reference epoxy gelcoat.