Antiadhesive surfaces have been gaining continuous attention, because of the scientific and industrial significance. Slippery surfaces and antismudge coatings with antiadhesive behavior have been readily designed and prepared. However, improving robustness of the surfaces, especially the simultaneous demonstration of features of high hardness, excellent adhesion to different substrates, and high thermal stability, is constantly challenging. Herein, we present a silica/polydimethylsiloxane (PDMS) nanocomposite coating (SPNC), wherein silica acts as a consecutive phase and nanophased PDMS is covalently embedded. The nanoconfined PDMS phase exhibits enhanced thermal stability and endows SPNC with slippery behavior; meanwhile, enrichment of PDMS on the surface renders a gradient composition of the coating. Accordingly, the inorganic−organic SPNC simultaneously displays a high nanoindentation hardness of 3.07 GPa and a pencil hardness over 9H, outstanding thermal stability of the slippery performance up to 400 °C, and excellent adhesion strength to different substrates. Additionally, SPNC exhibits high optical transparency, flexibility, resistance to bacterial clone, and chemical corrosion. With the scalable fabrication process, it can be envisioned that the antiadhesive coating with unprecedented comprehensive merits in this work has significant potentials for large-area applications, especially under severe service environments.