Two conjugated microporous polymers containing thiophene-moieties (SCMPs) were obtained by the polymerization of 3,3',5,5'-tetrabromo-2,2'-bithiophene and ethynylbenzene monomers through the palladium-catalyzed Sonogashira-Hagihara crosscoupling reaction. The resulting SCMPs show high thermal stability with a decomposition temperature above 300 °C. Scanning electron microscopy images show that the resulting SCMPs formed as an aggregation composed of micrometer-sized SCMP spheres, in which honeycomb-like porous spheres with penetrated pores on the surface were observed. Taking advantage of such a unique honeycomb-like porous morphology as well as π-conjugated structures, the SCMPs show ultrahigh absorption performance for iodine vapour with an uptake of up to 345 wt% obtained, which is the highest value reported to date for CMPs, thus making the resulting SCMPs ideal absorbent materials for reversible iodine capture to address environmental issues.