An improved protocol for the selective dilithiation of [V(η(5)-C(5)H(5))(η(7)-C(7)H(7))] has been developed, which afforded [V(η(5)-C(5)H(4)Li)(η(7)-C(7)H(6)Li)]·PMDTA (5; PMDTA=N,N,N',N'',N''-pentamethyldiethylenetriamine) in almost quantitative yield (98%). In the solid state, the species features a dimeric structure with two terminal and two bridging lithium atoms, with the latter connecting both sandwich subunits. Reaction with suitable Group 4 dihalide compounds enabled the isolation of highly strained silicon- and germanium-bridged [1]trovacenophanes 6 and 7. Similarly, reaction of 5 with Cl(2)Sn(2)tBu(4) afforded the rather unstrained complex [V(η(5)-C(5)H(4))(η(7)-C(7)H(6))Sn(2)tBu(4)] (8), which together with 7 represent the first trovacenophanes to incorporate heavier analogues of silicon in the ansa-bridge. Ring-opening polymerization reactions of [V(η(5)-C(5)H(4))(η(7)-C(7)H(6))SiRR'] (2a: R=R'=Me; 6: R=Me, R'=iPr) were performed by heating in a solution of toluene in the presence of the Karstedt catalyst, which resulted in the formation of the corresponding soluble poly(trovacenylsilanes) in yields of 41 and 33%, respectively. As estimated by gel permeation chromatography (GPC), the macromolecules possess molecular weights of M(n)=10,010 and 5580 g mol(-1) with polydispersity indices of 2.31 and 1.64 for 9 and 10, respectively. ESR spectroscopic studies on 9 and 10 revealed only a single broad resonance in each case without any identifiable (51)V hyperfine coupling.