The structure of [(CF3N2NMe)Mo(CH2SiMe3)2] (in which (CF3N2NMe)2- is [(3-CF3C6H4NCH2CH2)2NMe]2-) is approximately trigonal bipyramidal with one axial and one equatorial alkyl ligand. Heating of solutions of [(CF3N2NMe)Mo(CH2SiMe3)2] in [D6]benzene in the presence of five equivalents of 2-butyne led to diamagnetic [(CF3N2NMe)Mo(CHSiMe3)(eta(2)-MeC[triple bond]CMe)], whose structure is approximately square pyramidal with the alkyne occupying the axial site. Addition of one equivalent of cyclohexene sulfide to [(CF3N2NMe)Mo(CH2SiMe3)2] at room temperature produced the diamagnetic, dimeric molybdenum(IV) sulfido complex, [{(CF3N2NMe)MoS}2]. This complex is composed of two approximately trigonal bipyramidal centers, each containing one axial and one equatorial sulfur atom. Oxidation of [(CF3N2NMe)Mo(CH2SiMe3)2] with hexachloroethane resulted in formation of tetramethylsilane, HCl, and the sparingly soluble, red alkylidyne complex, [{(CF3N2NMe)Mo(CSiMe3)Cl}2]. This complex forms a dimer through bridging chlorides. The oxidation reactions of [(CF3N2NMe)Mo(CH2SiMe3)2] with 2-butyne, cyclohexene sulfide, or C2Cl6 are all proposed to proceed by alpha-hydrogen abstraction in the Mo(VI) species to yield (initially) the Mo=CHSiMe3 species and tetramethylsilane.