A novel oxazon‐Schiff's base ligand named (E)‐3‐(2‐(4‐(diethylamino)‐2‐hydroxybenzylidene)hydrazineyl)‐2H‐benzo[b][1,4]oxazin‐2‐one (HL) has been synthesized in addition to its nano‐sized divalent and tetravalent Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pt (IV) complexes. The structures and geometries of the synthesized compounds have been confirmed using the different analytical and spectroscopic tools such as elemental analysis, uv–vis., IR, HR‐MS, 1H NMR, ESR, TGA, XRD, EDX, TEM, SEM, AFM, magnetic and molar conductivity measurements. The elemental analyses confirm 1 M: 2 L stoichiometry of the type [PtL2].2Cl and [ML2] (M = Mn (II), Co (II), Ni (II), Cu (II) and Zn (II)). The FT‐IR spectral studies illustrated that the ligand bind to the metal ions through the phenolic hydroxy oxygen, azo methine nitrogen carbonyl oxazin oxygen. The spectral tools; UV–Vis, ligand field parameters and ESR in addition to the magnetic moment measurements confirmed octahedral geometry around the metal centres. The absence of coordinated or hydrated water complexes were confirmed by thermal analysis data of the complexes. The electron transfer reactions for the complexes have been studied by cyclic voltammetry. XRD, SEM, TEM, and AFM images confirmed nano‐sized particles and homogeneous distribution over the complex surface. The mode of binding of the complexes with DNA has been performed through electronic absorption titration and viscosity studies. The reaction between the metal complexes and DNA were studied by DNA cleavage. In general, MCF‐7 cell were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HepG‐2. The binding mode of the compounds and DNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb) and IC50 for two human cancer cell was observed.