A series of polysiloxane side chain liquid crystal polymers with strong polarity cyano substitution‐terminated achiral side chains and cholesterol‐terminated chiral side chains was successfully synthesized via thiol‐ene click chemistry. 1H‐NMR, FT‐IR, and thermogravimetric analysis were used to confirm their chemical structures and thermal stabilities. Their phase transition behaviors and phase structures were systematically investigated by a combination of analysis methods such as differential scanning calorimetry, polarized optical microscopy, and X‐ray. Results revealed that attributing to the decisive role of the polarity interaction, all the polymers only developed a monolayer interdigitated SmA phase in which the period arrangement was determined by the cyano‐terminated side chains, the increased content of cholesterol‐terminated chiral side chains (Xchol) just expanded the distance between neighboring molecules within a layer. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1765–1772